Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
ACS Pharmacol Transl Sci ; 7(3): 641-653, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38481684

RESUMO

Lisuride is a non-psychedelic serotonin (5-HT) 2A receptor (5-HT2A) agonist and analogue of the psychedelic lysergic acid diethylamide (LSD). Lisuride also acts as an agonist at the serotonin 1A receptor (5-HT1A), a property known to counter psychedelic effects. Here, we tested whether lisuride lacks psychedelic activity due to a dual mechanism: (1) partial agonism at 5-HT2A and (2) potent agonism at 5-HT1A. The in vitro effects of lisuride, LSD, and related analogues on 5-HT2A signaling were characterized by using miniGαq and ß-arrestin 2 recruitment assays. The 5-HT1A- and 5-HT2A-mediated effects of lisuride and LSD were also compared in male C57BL/6J mice. The in vitro results confirmed that LSD is an agonist at 5-HT2A, with high efficacy and potency for recruiting miniGαq and ß-arrestin 2. By contrast, lisuride displayed partial efficacy for both functional end points (6-52% of 5-HT or LSD Emax) and antagonized the effects of LSD. The mouse experiments demonstrated that LSD induces head twitch responses (HTRs)(ED50 = 0.039 mg/kg), while lisuride suppresses HTRs (ED50 = 0.006 mg/kg). Lisuride also produced potent hypothermia and hypolocomotion (ED50 = 0.008-0.023 mg/kg) that was blocked by the 5-HT1A antagonist WAY100635 (3 mg/kg). Blockade of 5-HT1A prior to lisuride restored basal HTRs, but it failed to increase HTRs above baseline levels. HTRs induced by LSD were blocked by lisuride (0.03 mg/kg) or the 5-HT1A agonist 8-OH-DPAT (1 mg/kg). Overall, our findings show that lisuride is an ultrapotent 5-HT1A agonist in C57BL/6J mice, limiting its use as a 5-HT2A ligand in mouse studies examining acute drug effects. Results also indicate that the 5-HT2A partial agonist-antagonist activity of lisuride explains its lack of psychedelic effects.

2.
ACS Chem Neurosci ; 15(4): 854-867, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38345920

RESUMO

Novel synthetic opioids (NSOs), including both fentanyl and non-fentanyl analogs that act as µ-opioid receptor (MOR) agonists, are associated with serious intoxication and fatal overdose. Previous studies proposed that G-protein-biased MOR agonists are safer pain medications, while other evidence indicates that low intrinsic efficacy at MOR better explains the reduced opioid side effects. Here, we characterized the in vitro functional profiles of various NSOs at the MOR using adenylate cyclase inhibition and ß-arrestin2 recruitment assays, in conjunction with the application of the receptor depletion approach. By fitting the concentration-response data to the operational model of agonism, we deduced the intrinsic efficacy and affinity for each opioid in the Gi protein signaling and ß-arrestin2 recruitment pathways. Compared to the reference agonist [d-Ala2,N-MePhe4,Gly-ol5]enkephalin, we found that several fentanyl analogs were more efficacious at inhibiting cAMP production, whereas all fentanyl analogs were less efficacious at recruiting ß-arrestin2. In contrast, the non-fentanyl 2-benzylbenzimidazole (i.e., nitazene) analogs were highly efficacious and potent in both the cAMP and ß-arrestin2 assays. Our findings suggest that the high intrinsic efficacy of the NSOs in Gi protein signaling is a common property that may underlie their high risk of intoxication and overdose, highlighting the limitation of using in vitro functional bias to predict the adverse effects of opioids. In addition, the extremely high potency of many NSOs now infiltrating illicit drug markets further contributes to the danger posed to public health.


Assuntos
Analgésicos Opioides , Fentanila , Fentanila/farmacologia , Analgésicos Opioides/farmacologia , Receptores Opioides mu/agonistas , Transdução de Sinais , Proteínas de Ligação ao GTP/metabolismo , Encefalinas/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia
3.
ACS Chem Neurosci ; 15(2): 315-327, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38189238

RESUMO

Primary metabolites of mushroom tryptamines, psilocybin and baeocystin (i.e., psilocin and norpsilocin), exhibit potent agonist activity at the serotonin 2A receptor (5-HT2A) in vitro but differ in their 5-HT2A-mediated effects in vivo. In particular, psilocin produces centrally mediated psychedelic effects in vivo, whereas norpsilocin, differing only by the loss of an N-methyl group, is devoid of psychedelic-like effects. These observations suggest that the secondary methylamine group in norpsilocin impacts its central nervous system (CNS) bioavailability but not its receptor pharmacodynamics. To test this hypothesis, eight norpsilocin derivatives were synthesized with varied secondary alkyl-, allyl-, and benzylamine groups, primarily aiming to increase their lipophilicity and brain permeability. Structure-activity relationships for the norpsilocin analogues were evaluated using the mouse head-twitch response (HTR) as a proxy for CNS-mediated psychedelic-like effects. HTR studies revealed that extending the N-methyl group of norpsilocin by a single methyl group, to give the corresponding secondary N-ethyl analogue (4-HO-NET), was sufficient to produce psilocin-like activity (median effective dose or ED50 = 1.4 mg/kg). Notably, N-allyl, N-propyl, N-isopropyl, and N-benzyl derivatives also induced psilocin-like HTR activity (ED50 = 1.1-3.2 mg/kg), with variable maximum effects (26-77 total HTR events). By contrast, adding bulkier tert-butyl or cyclohexyl groups in the same position did not elicit psilocin-like HTRs. Pharmacological assessments of the tryptamine series in vitro demonstrated interactions with multiple serotonin receptor subtypes, including 5-HT2A, and other CNS signaling proteins (e.g., sigma receptors). Overall, our data highlight key structural requirements for CNS-mediated psychedelic-like effects of norpsilocin analogues.


Assuntos
Alucinógenos , Camundongos , Animais , Alucinógenos/química , Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Encéfalo/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo
4.
J Pharmacol Exp Ther ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272669

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA) has shown efficacy as a medication adjunct for treating post-traumatic stress disorder (PTSD). However, MDMA is also used in non-medical contexts that pose risk for cardiovascular and neurological complications. It is well established that MDMA exerts its effects by stimulating transporter-mediated release of the monoamines, 5­hydroxytryptamine (5-HT), norepinephrine, and dopamine. Current research efforts are aimed at developing MDMA-like monoamine releasers with better efficacy and safety profiles. To this end, we investigated neurochemical and behavioral effects of novel analogs of the designer drug, 5-(2-methylaminopropyl)benzofuran (5-MAPB). We used in vitro transporter assays in rat brain synaptosomes to examine transmitter uptake inhibition and releasing properties for enantiomers of 5-(2-methylaminobutyl)benzofuran (5-MABB) and 6-(2-methylaminobutyl)benzofuran (6-MABB) as compared to MDMA. We then tested these same compounds in male Sprague-Dawley rats trained to discriminate MDMA (1.5 mg/kg) from saline. In vitro results revealed that S isomers of 5- and 6-MABB are efficacious releasing agents at transporters for 5-HT (SERT), norepinephrine (NET), and dopamine (DAT). By contrast, R isomers are efficacious releasers at SERT, partial releasers at NET, but lack releasing activity at DAT. In vivo results showed that all compounds produce dose-dependent increases in MDMA-lever responding and full substitution at the highest dose tested. The diminished NET and DAT releasing activities for R isomers of 5- and 6-MABB are associated with reduced potency for inducing behavioral effects. Collectively, these findings indicate that the aminoalkyl benzofuran scaffold may be a viable template for developing compounds with MDMA-like properties. Significance Statement Despite the clinical utility of MDMA, the drug is associated with certain cardiovascular risks and metabolic side effects. Developing a therapeutic alternative with MDMA-like monoamine releasing activity is of interest. Our in vitro and in vivo findings indicate that the aminoalkyl benzofuran scaffold may be useful for developing compounds with MDMA-like properties.

5.
Neuropharmacology ; 245: 109827, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154512

RESUMO

Substitutions to the phenethylamine structure give rise to numerous amphetamines and cathinones, contributing to an ever-growing number of abused novel psychoactive substances. Understanding how various substitutions affect the pharmacology of phenethylamines may help lawmakers and scientists predict the effects of newly emerging drugs. Here, we established structure-activity relationships for locomotor stimulant and monoamine transporter effects of 12 phenethylamines with combinations of para-chloro, ß-keto, N-methyl, or N-ethyl additions. Automated photobeam analysis was used to evaluate effects of drugs on ambulatory activity in mice, whereas in vitro assays were used to determine activities at transporters for dopamine (DAT), norepinephrine (NET), and 5-HT (SERT) in rat brain synaptosomes. In mouse studies, all compounds stimulated locomotion, except for 4-chloro-N-ethylcathinone. Amphetamines were more potent stimulants than their ß-keto counterparts, while para-chloro amphetamines tended to be more efficacious than unsubstituted amphetamines. Para-chloro compounds also produced lethality at doses on the ascending limbs of their locomotor dose-effect functions. The in vitro assays showed that all compounds inhibited uptake at DAT, NET, and SERT, with most compounds also acting as substrates (i.e., releasers) at these sites. Unsubstituted compounds displayed better potency at DAT and NET relative to SERT. Para-chloro substitution or increased N-alkyl chain length augmented relative potency at SERT, while combined para-chloro and N-ethyl substitutions reduced releasing effects at NET and DAT. These results demonstrate orderly SAR for locomotor stimulant effects, monoamine transporter activities, and lethality induced by phenethylamines. Importantly, 4-chloro compounds produce toxicity in mice that suggests serious risk to humans using these drugs in recreational contexts.


Assuntos
Alcaloides , Estimulantes do Sistema Nervoso Central , Humanos , Ratos , Camundongos , Animais , Anfetaminas/farmacologia , Alcaloides/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Relação Estrutura-Atividade , Proteínas de Transporte , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina , Proteínas da Membrana Plasmática de Transporte de Norepinefrina
6.
Mol Psychiatry ; 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38145984

RESUMO

(R,S)-methadone ((R,S)-MTD) is a µ-opioid receptor (MOR) agonist comprised of (R)-MTD and (S)-MTD enantiomers. (S)-MTD is being developed as an antidepressant and is considered an N-methyl-D-aspartate receptor (NMDAR) antagonist. We compared the pharmacology of (R)-MTD and (S)-MTD and found they bind to MORs, but not NMDARs, and induce full analgesia. Unlike (R)-MTD, (S)-MTD was a weak reinforcer that failed to affect extracellular dopamine or induce locomotor stimulation. Furthermore, (S)-MTD antagonized motor and dopamine releasing effects of (R)-MTD. (S)-MTD acted as a partial agonist at MOR, with complete loss of efficacy at the MOR-galanin Gal1 receptor (Gal1R) heteromer, a key mediator of the dopaminergic effects of opioids. In sum, we report novel and unique pharmacodynamic properties of (S)-MTD that are relevant to its potential mechanism of action and therapeutic use. One-sentence summary: (S)-MTD, like (R)-MTD, binds to and activates MORs in vitro, but (S)-MTD antagonizes the MOR-Gal1R heteromer, decreasing its abuse liability.

7.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014284

RESUMO

Novel synthetic opioids (NSOs), including both fentanyl and non-fentanyl analogs that act as the µ-opioid receptor (MOR) agonists, are associated with serious intoxication and fatal overdose. Previous studies proposed that G protein biased MOR agonists are safer pain medications, while other evidence indicates that low intrinsic efficacy at MOR better explains reduced opioid side effects. Here, we characterized the in vitro functional profiles of various NSOs at MOR using adenylate cyclase inhibition and ß-arrestin2 recruitment assays, in conjunction with the application of the receptor depletion approach. By fitting the concentration-response data to the operational model of agonism, we deduced the intrinsic efficacy and affinity for each opioid in the Gi protein signaling and ß-arrestin2 recruitment pathways. Compared to the reference agonist DAMGO, we found that several fentanyl analogs were more efficacious at inhibiting cAMP production, whereas all fentanyl analogs were less efficacious at recruiting ß-arrestin2. In contrast, the non-fentanyl 2-benzylbenzimidazole (i.e., nitazene) analogs were highly efficacious and potent in both the cAMP and ß-arrestin2 assays. Our findings suggest that the high intrinsic efficacy of the NSOs in Gi protein signaling is a common property that may underlie their high risk of intoxication and overdose, highlighting the limitation of using in vitro functional bias to predict the adverse effects of opioids. Instead, our results show that, regardless of bias, opioids with sufficiently high intrinsic efficacy can be lethal, especially given the extremely high potency of many of these compounds that are now pervading the illicit drug market.

8.
ACS Chem Neurosci ; 14(21): 3928-3940, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847546

RESUMO

The emergence of synthetic cannabinoid receptor agonists (SCRAs) as illicit psychoactive substances has posed considerable public health risks, including fatalities. Many SCRAs exhibit much higher efficacy and potency compared with the phytocannabinoid Δ9-tetrahydrocannabinol (THC) at the cannabinoid receptor 1 (CB1R), leading to dramatic differences in signaling levels that can be toxic. In this study, we investigated the structure-activity relationships of aminoalkylindole SCRAs at CB1Rs, focusing on 5F-pentylindoles containing an amide linker attached to different head moieties. Using in vitro bioluminescence resonance energy transfer assays, we identified a few SCRAs exhibiting significantly higher efficacy in engaging the Gi protein and recruiting ß-arrestin than the reference CB1R full agonist CP55940. Importantly, the extra methyl group on the head moiety of 5F-MDMB-PICA, as compared to that of 5F-MMB-PICA, led to a large increase in efficacy and potency at the CB1R. This pharmacological observation was supported by the functional effects of these SCRAs on glutamate field potentials recorded in hippocampal slices. Molecular modeling and simulations of the CB1R models bound with both of the SCRAs revealed critical structural determinants contributing to the higher efficacy of 5F-MDMB-PICA and how these subtle differences propagated to the receptor-G protein interface. Thus, we find that apparently minor structural changes in the head moiety of SCRAs can cause major changes in efficacy. Our results highlight the need for close monitoring of the structural modifications of newly emerging SCRAs and their potential for toxic drug responses in humans.


Assuntos
Agonistas de Receptores de Canabinoides , Canabinoides , Humanos , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/química , Receptor CB1 de Canabinoide , Canabinoides/metabolismo , Dronabinol , Receptor CB2 de Canabinoide
9.
Psychopharmacology (Berl) ; 240(12): 2573-2584, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658878

RESUMO

RATIONALE: Novel synthetic opioids (NSOs) are emerging in recreational drug markets worldwide. In particular, 2-benzylbenzimidazole 'nitazene' compounds are problematic NSOs associated with serious clinical consequences, including fatal respiratory depression. Evidence from in vitro studies shows that alkoxy chain length can influence the potency of nitazenes at the mu-opioid receptor (MOR). However, structure-activity relationships (SARs) of nitazenes for inducing opioid-like effects in animal models are not well understood compared to relevant opioids contributing to the ongoing opioid crisis (e.g., fentanyl). OBJECTIVES: Here, we examined the in vitro and in vivo effects of nitazene analogues with varying alkoxy chain lengths (i.e., metonitazene, etonitazene, isotonitazene, protonitazene, and butonitazene) as compared to reference opioids (i.e., morphine and fentanyl). METHODS AND RESULTS: Nitazene analogues displayed nanomolar affinities for MOR in rat brain membranes and picomolar potencies to activate MOR in transfected cells. All compounds induced opioid-like effects on locomotor activity, hot plate latency, and body temperature in male mice, and alkoxy chain length markedly influenced potency. Etonitazene, with an ethoxy chain, was the most potent analogue in MOR functional assays (EC50 = 30 pM, Emax = 103%) and across all in vivo endpoints (ED50 = 3-12 µg/kg). In vivo SARs revealed that ethoxy, isopropoxy, and propoxy chains engendered higher potencies than fentanyl, whereas methoxy and butoxy analogues were less potent. MOR functional potencies, but not MOR affinities, were positively correlated with in vivo potencies to induce opioid effects. CONCLUSIONS: Overall, our data show that certain nitazene NSOs are more potent than fentanyl as MOR agonists in mice, highlighting concerns regarding the high potential for overdose in humans who are exposed to these compounds.


Assuntos
Analgésicos Opioides , Fentanila , Ratos , Humanos , Masculino , Camundongos , Animais , Analgésicos Opioides/farmacologia , Fentanila/farmacologia , Receptores Opioides mu/agonistas
10.
bioRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37398099

RESUMO

The emergence of synthetic cannabinoid receptor agonists (SCRAs) as illicit psychoactive substances has posed considerable public health risks that include fatalities. Many SCRAs exhibit much higher efficacy and potency, compared with the phytocannabinoid Δ9-tetrahydrocannabinol (THC), at the cannabinoid receptor 1 (CB1R), a G protein-coupled receptor involved in modulating neurotransmitter release. In this study, we investigated structure activity relationships (SAR) of aminoalkylindole SCRAs at CB1Rs, focusing on 5F-pentylindoles containing an amide linker attached to different head moieties. Using in vitro bioluminescence resonance energy transfer (BRET) assays, we identified a few of SCRAs exhibiting significantly higher efficacy in engaging the Gi protein and recruiting ß-arrestin than the reference CB1R full agonist CP55940. Importantly, adding a methyl group at the head moiety of 5F-MMB-PICA yielded 5F-MDMB-PICA, an agonist exhibiting a large increase in efficacy and potency at the CB1R. This pharmacological observation was supported by a functional assay of the effects of these SCRAs on glutamate field potentials recorded in hippocampal slices. Molecular modeling and simulations of the CB1R bound with either of the SCRAs revealed critical structural determinants contributing to the higher efficacy of 5F-MDMB-PICA, and how these subtle differences propagated to the receptor-G protein interface. Thus, we find that apparently minor structural changes in the head moiety of SCRAs can cause major changes in efficacy. Our results highlight the need for close monitoring of structural modifications of newly emerging SCRAs and their potential for toxic drug responses in humans.

11.
Arch Pharm (Weinheim) ; 356(9): e2300256, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37452407

RESUMO

The increasing misuse of novel synthetic opioids (NSOs) represents a serious public health concern. In this regard, U-47700 (trans-3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide) and related "U-compounds" emerged on recreational drug markets as synthetic substitutes for illicit heroin and constituents of counterfeit pain medications. While the pharmacology of U-compounds has been investigated using in vitro and in vivo methods, there is still a lack of understanding about the details of ligand-receptor interactions at the molecular level. To this end, we have developed a molecular modeling protocol based on docking and molecular dynamics simulations to assess the nature of ligand-receptor interactions for U-47700, N,N-didesmethyl U-47700, and U-50488 at the mu-opioid receptor (MOR) and kappa-opioid receptor (KOR). The evaluation of ligand-receptor and ligand-receptor-membrane interaction energies enabled the identification of subtle conformational shifts in the receptors induced by ligand binding. Interestingly, the removal of two key methyl groups from U-47700, to form N,N-didesmethyl U-47700, caused a loss of hydrogen bond contact with tryptophan (Trp)229, which may underlie the lower interaction energy and reduced MOR affinity for the compound. Taken together, our results are consistent with the reported biological findings for U-compounds and provide a molecular basis for the MOR selectivity of U-47700 and KOR selectivity of U-50488.


Assuntos
Receptores Opioides kappa , Receptores Opioides mu , Receptores Opioides kappa/química , Receptores Opioides kappa/metabolismo , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Ligantes , Relação Estrutura-Atividade , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacologia , Analgésicos Opioides/química
12.
Drug Alcohol Depend ; 249: 109939, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276825

RESUMO

BACKGROUND: The emergence of novel synthetic opioids (NSOs) is contributing to the opioid overdose crisis. While fentanyl analogs have historically dominated the NSO market, a shift towards non-fentanyl compounds is now occurring. METHODS: Here, we examined the neuropharmacology of structurally distinct non-fentanyl NSOs, including U-47700, isotonitazene, brorphine, and N-desethyl isotonitazene, as compared to morphine and fentanyl. Compounds were tested in vitro using opioid receptor binding assays in rat brain tissue and by monitoring forskolin-stimulated cAMP accumulation in cells expressing the human mu-opioid receptor (MOR). Compounds were administered subcutaneously to male Sprague-Dawley rats, and hot plate antinociception, catalepsy score, and body temperature changes were measured. RESULTS: Receptor binding results revealed high MOR selectivity for all compounds, with MOR affinities comparable to those of morphine and fentanyl (i.e., nM). All drugs acted as full-efficacy MOR agonists in the cyclic AMP assay, but nitazene analogs had greater functional potencies (i.e., pM) compared to the other drugs (i.e., nM). When administered to rats, all compounds induced opioid-like antinociception, catalepsy, and body temperature changes, but nitazenes were the most potent. Similar to fentanyl, the nitazenes had faster onset and decline of in vivo effects when compared to morphine. In vivo potencies to induce antinociception and catalepsy (i.e., ED50s) correlated with in vitro functional potencies (i.e., EC50s) but not binding affinities (i.e., Kis) at MOR. CONCLUSIONS: Collectively, our findings indicate that non-fentanyl NSOs pose grave danger to those individuals who use opioids. Continued vigilance is needed to identify and characterize synthetic opioids as they emerge in clandestine drug markets.


Assuntos
Analgésicos Opioides , Drogas Ilícitas , Ratos , Masculino , Humanos , Animais , Analgésicos Opioides/farmacologia , Analgésicos Opioides/química , Fentanila/farmacologia , Drogas Ilícitas/farmacologia , Catalepsia , Neurofarmacologia , Ratos Sprague-Dawley , Morfina/farmacologia , Receptores Opioides mu/agonistas
13.
Neuropharmacology ; 233: 109528, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37015315

RESUMO

Chronic pain is a leading cause of disability, reduced productivity, healthcare seeking behavior, and a contributor to opioid overdose in the United States. For many people, pain can be satisfactorily managed by existing medicines and comprehensive psychosocial treatments. For others, available treatments are either ineffective or not acceptable, due to side effects and concerns about risks. Preliminary evidence suggests that some psychedelics may be effective for certain types of pain and/or improved quality of life with increased functionality and reduced disability and distress in people whose pain may never be completely relieved. Efficacy in these quality-of-life related outcomes would be consistent with the 'reset in thinking' about chronic pain management being increasingly called for as a more realistic goal for some people as compared to complete elimination of pain. This commentary summarizes the rationale for conducting more basic research and clinical trials to further explore the potential for psychedelics in chronic pain management. Additionally, if shown to be effective, to then determine whether the effects of psychedelics are primarily due to direct antinociceptive or anti-inflammatory mechanisms, or via increased tolerability, acceptance, and sense of spirituality, that appear to at least partially mediate the therapeutic effects of psychedelics observed in psychiatric disorders such as major depression. This commentary represents a collaboration of clinical and more basic scientists examining these issues and developing recommendations for research ranging from neuropharmacology to the biopsychosocial treatment factors that appear to be as important in pain management as in depression and other disorders in which psychedelic medicines are under development. This article is part of the Special Issue on "National Institutes of Health Psilocybin Research Speaker Series".


Assuntos
Dor Crônica , Transtorno Depressivo Maior , Alucinógenos , Humanos , Estados Unidos , Alucinógenos/uso terapêutico , Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico/farmacologia , Dor Crônica/tratamento farmacológico , Qualidade de Vida , Psilocibina/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico
14.
ACS Pharmacol Transl Sci ; 6(4): 567-577, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37082754

RESUMO

Analogues of 4-phosphoryloxy-N,N-dimethyltryptamine (psilocybin) are being sold on recreational drug markets and developed as potential medications for psychedelic-assisted therapies. Many of these tryptamine-based psilocybin analogues produce psychedelic-like effects in rodents and humans primarily by agonist activity at serotonin 2A receptors (5-HT2A). However, the comprehensive pharmacological target profiles for these compounds compared to psilocybin and its active metabolite 4-hydroxy-N,N-dimethyltryptamine (psilocin) are unknown. The present study determined the receptor binding profiles of various tryptamine-based psychedelics structurally related to psilocybin across a broad range of potential targets. Specifically, we examined tryptamine psychedelics with different 4-position (hydroxy, acetoxy, propionoxy) and N,N-dialkyl (dimethyl, methyl-ethyl, diethyl, methyl-propyl, ethyl-propyl, diisopropyl, methyl-allyl, diallyl) substitutions. Further, the psilocybin analogue 4-propionoxy-N,N-dimethyltryptamine (4-PrO-DMT) was administered to mice in experiments measuring head twitch response (HTR), locomotor activity, and body temperature. Overall, the present pharmacological profile screening data show that the tryptamine psychedelics target multiple serotonin receptors, including serotonin 1A receptors (5-HT1A). 4-Acetoxy and 4-propionoxy analogues of 4-hydroxy compounds displayed somewhat weaker binding affinities but similar target profiles across 5-HT receptors and other identified targets. Additionally, differential binding screen profiles were observed with N,N-dialkyl position variations across several non-5-HT receptor targets (i.e., alpha receptors, dopamine receptors, histamine receptors, and serotonin transporters), which could impact in vivo pharmacological effects of the compounds. In mouse experiments, 4-PrO-DMT displayed dose-related psilocybin-like effects to produce 5-HT2A-mediated HTR (0.3-3 mg/kg s.c.) as well as 5-HT1A-mediated hypothermia and hypolocomotion (3-30 mg/kg s.c.). Lastly, our data support a growing body of evidence that the 5-HT2A-mediated HTR induced by tryptamine psychedelics is attenuated by 5-HT1A receptor agonist activity at high doses in mice.

15.
Neuropharmacology ; 227: 109442, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731721

RESUMO

Illicitly manufactured fentanyl is driving the current opioid crisis, and various fentanyl analogs are appearing in recreational drug markets worldwide. To assess the potential health risks posed by fentanyl analogs, it is necessary to understand structure-activity relationships for these compounds. Here we compared the pharmacology of two structurally related fentanyl analogs implicated in opioid overdose: cyclopropylfentanyl and valerylfentanyl. Cyclopropylfentanyl has a three-carbon ring attached to the carbonyl group on the fentanyl scaffold, whereas valerylfentanyl has a four-carbon chain at the same position. In vitro assays examining µ-opioid receptor (MOR) coupling to G proteins in CHO cells showed that cyclopropylfentanyl is a full agonist (EC50 = 8.6 nM, %Emax = 113%), with potency and efficacy similar to fentanyl (EC50 = 10.3 nM, %Emax = 113%). By contrast, valerylfentanyl is a partial agonist at MOR (EC50 = 179.8 nM, %Emax = 60%). Similar results were found in assays assessing MOR-mediated ß-arrestin recruitment in HEK cells. In vivo studies in male CD-1 mice demonstrated that both fentanyl analogs induce naloxone-reversible antinociception and respiratory suppression, but cyclopropylfentanyl is 100-times more potent as an antinociceptive agent (ED50 = 0.04 mg/kg, s. c.) than valerylfentanyl (ED50 = 4.0 mg/kg, s. c.). Molecular simulation results revealed that the alkyl chain of valerylfentanyl cannot be well accommodated by the active state of MOR and may transition the receptor toward an inactive state, converting the fentanyl scaffold to a partial agonist. Taken together, our results suggest that cyclopropylfentanyl presents much greater risk of adverse effects when compared to valerylfentanyl. Moreover, the summed findings may provide clues to the design of therapeutic opioids with reduced adverse side effects.


Assuntos
Analgésicos Opioides , Fentanila , Masculino , Camundongos , Animais , Cricetinae , Cricetulus , Fentanila/farmacologia , Analgésicos Opioides/farmacologia , Naloxona , Relação Estrutura-Atividade , Receptores Opioides mu/agonistas
16.
Proc Natl Acad Sci U S A ; 120(6): e2114204120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36730201

RESUMO

Psychostimulants interacting with the dopamine transporter (DAT) can be used illicitly or for the treatment of specific neuropsychiatric disorders. However, they can also produce severe and persistent adverse events. Often, their pharmacological properties in vitro do not fully correlate to their pharmacological profile in vivo. Here, we investigated the pharmacological effects of enantiomers of pyrovalerone, α-pyrrolidinovalerophenone, and 3,4-methylenedioxypyrovalerone as compared to the traditional psychostimulants cocaine and methylphenidate, using a variety of in vitro, computational, and in vivo approaches. We found that in vitro drug-binding kinetics at DAT correlate with the time-course of in vivo psychostimulant action in mice. In particular, a slow dissociation (i.e., slow koff) of S-enantiomers of pyrovalerone analogs from DAT predicts their more persistent in vivo effects when compared to cocaine and methylphenidate. Overall, our findings highlight the critical importance of drug-binding kinetics at DAT for determining the in vivo profile of effects produced by psychostimulant drugs.


Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Metilfenidato , Camundongos , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Cocaína/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Metilfenidato/farmacologia
17.
Mar Drugs ; 21(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36827103

RESUMO

χ-Conotoxins are known for their ability to selectively inhibit norepinephrine transporters, an ability that makes them potential leads for treating various neurological disorders, including neuropathic pain. PnID, a peptide isolated from the venom of Conus pennaceus, shares high sequence homology with previously characterized χ-conotoxins. Whereas previously reported χ-conotoxins seem to only have a single native disulfide bonding pattern, PnID has three native isomers due to the formation of different disulfide bond patterns during its maturation in the venom duct. In this study, the disulfide connectivity and three-dimensional structure of these disulfide isomers were explored using regioselective synthesis, chromatographic coelution, and solution-state nuclear magnetic resonance spectroscopy. Of the native isomers, only the isomer with a ribbon disulfide configuration showed pharmacological activity similar to other χ-conotoxins. This isomer inhibited the rat norepinephrine transporter (IC50 = 10 ± 2 µM) and has the most structural similarity to previously characterized χ-conotoxins. In contrast, the globular isoform of PnID showed more than ten times less activity against this transporter and the beaded isoform did not display any measurable biological activity. This study is the first report of the pharmacological and structural characterization of an χ-conotoxin from a species other than Conus marmoreus and is the first report of the existence of natively-formed conotoxin isomers.


Assuntos
Conotoxinas , Caramujo Conus , Ratos , Animais , Conotoxinas/farmacologia , Dissulfetos/química , Caramujo Conus/química , Peptídeos/química , Espectroscopia de Ressonância Magnética
18.
J Pharmacol Exp Ther ; 385(3): 162-170, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36669877

RESUMO

Synthetic cathinones are a class of new psychoactive substances that display psychomotor stimulant properties, and novel cathinone analogs continue to emerge in illicit drug markets worldwide. The aim of the present study was to characterize the pharmacology of 4-chloro ring-substituted cathinones that are appearing in illicit drug markets compared with the effects of 4-methylmethcathinone (mephedrone). Synaptosomes were prepared from rat caudate for dopamine transporter (DAT) assays or from whole brain minus caudate and cerebellum for norepinephrine transporter (NET) and serotonin transporter (SERT) assays. Findings from transporter uptake inhibition and release assays showed that mephedrone and 4-chloromethcathinone (4-CMC) function as substrates at DAT, NET, and SERT, with similar potency at all three transporters. In contrast, 4-chloro-α-pyrrolidinopropiophenone (4-CαPPP) was an uptake inhibitor at DAT and NET, with similar potency at each site, but had little activity at SERT. 4-Chloroethcathinone (4-CEC) was a low-potency uptake inhibitor at DAT and NET but a substrate at SERT. In rats implanted with telemetry transmitters, mephedrone and 4-CMC increased blood pressure, heart rate, and locomotor activity to a similar extent. 4-CEC and 4-CαPPP were less potent at increasing blood pressure and had modest stimulatory effects on heart rate and activity. 4-CMC also transiently decreased temperature at the highest dose tested. All three 4-chloro ring-substituted cathinones are biologically active, but only 4-CMC has potency comparable to mephedrone. Collectively, our findings suggest that 4-CMC and other 4-chloro cathinones may have abuse potential and adverse effects in humans that are analogous to those associated with mephedrone. SIGNIFICANCE STATEMENT: The 4-chloro ring-substituted cathinones all produced significant cardiovascular stimulation, with 4-chloromethcathinone (4-CMC) showing potency similar to mephedrone. All of the drugs are likely to be abused given their effects at the dopamine transporter, particularly 4-CMC.


Assuntos
Estimulantes do Sistema Nervoso Central , Drogas Ilícitas , Metanfetamina , Humanos , Ratos , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina , Catinona Sintética , Metanfetamina/farmacologia , Fármacos do Sistema Nervoso Central , Proteínas da Membrana Plasmática de Transporte de Serotonina , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Estimulantes do Sistema Nervoso Central/farmacologia
19.
Psychopharmacology (Berl) ; 240(1): 185-198, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36526866

RESUMO

RATIONALE: Isotonitazene is an illicit synthetic opioid associated with many intoxications and fatalities. Recent studies show that isotonitazene is a potent µ-opioid receptor (MOR) agonist in vitro, but little information is available about its in vivo effects. OBJECTIVES: The aims of the present study were to investigate the pharmacokinetics of isotonitazene in rats, and relate pharmacokinetic parameters to pharmacodynamic effects. METHODS: Isotonitazene and its metabolites were identified and quantified by liquid chromatography tandem quadrupole mass spectrometry (LC-QQQ-MS). Male Sprague-Dawley rats with jugular catheters and subcutaneous (s.c.) temperature transponders received isotonitazene (3, 10, 30 µg/kg, s.c.) or its vehicle. Blood samples were drawn at 15, 30, 60, 120, and 240 min post-injection, and plasma was assayed using LC-QQQ-MS. At each blood draw, body temperature, catalepsy scores, and hot plate latencies were recorded. RESULTS: Maximum plasma concentrations of isotonitazene rose in parallel with increasing dose (range 0.2-9.8 ng/mL) and half-life ranged from 23.4 to 63.3 min. The metabolites 4'-hydroxy nitazene and N-desethyl isotonitazene were detected, and plasma concentrations were below the limit of quantitation (0.5 ng/mL) but above the limit of detection (0.1 ng/mL). Isotonitazene produced antinociception (ED50 = 4.22 µg/kg), catalepsy-like symptoms (ED50 = 8.68 µg/kg), and hypothermia (only at 30 µg/kg) that were significantly correlated with concentrations of isotonitazene. Radioligand binding in rat brain tissue revealed that isotonitazene displays nM affinity for MOR (Ki = 15.8 nM), while the N-desethyl metabolite shows even greater affinity (Ki = 2.2 nM). CONCLUSIONS: In summary, isotonitazene is a potent MOR agonist whose pharmacodynamic effects are related to circulating concentrations of the parent drug. The high potency of isotonitazene portends substantial risk to users who are exposed to the drug.


Assuntos
Analgésicos Opioides , Catalepsia , Ratos , Masculino , Animais , Analgésicos Opioides/farmacologia , Analgésicos Opioides/metabolismo , Ratos Sprague-Dawley
20.
Mol Psychiatry ; 28(2): 722-732, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36352123

RESUMO

Increasing extracellular levels of serotonin (5-HT) in the brain ameliorates symptoms of depression and anxiety-related disorders, e.g., social phobias and post-traumatic stress disorder. Recent evidence from preclinical and clinical studies established the therapeutic potential of drugs inducing the release of 5-HT via the 5-HT-transporter. Nevertheless, current 5-HT releasing compounds under clinical investigation carry the risk for abuse and deleterious side effects. Here, we demonstrate that S-enantiomers of certain ring-substituted cathinones show preference for the release of 5-HT ex vivo and in vivo, and exert 5-HT-associated effects in preclinical behavioral models. Importantly, the lead cathinone compounds (1) do not induce substantial dopamine release and (2) display reduced off-target activity at vesicular monoamine transporters and 5-HT2B-receptors, indicative of low abuse-liability and low potential for adverse events. Taken together, our findings identify these agents as lead compounds that may prove useful for the treatment of disorders where elevation of 5-HT has proven beneficial.


Assuntos
Dopamina , Serotonina , Encéfalo , Proteínas de Transporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...